INTEGRATED WASTE MANAGEMENT PROJECT

40 MW Waste To Energy Lahore, Pakistan

Table of Contents

- **1- SATAREM Presentation**
- 2- Waste Management

a- Waste Management options
b- What is Waste To Energy (WTE)
c- WTE Configured to Prevent Dioxin Formation
d- WTE Design & Environmental Considerations
3- Lusaka Project

- 4- Technology Description
- 5- BOT Contract

Introduction

Satarem in a nutshell

Historical

Past & Present

- **1992** Established in France as a private entity supplying specialized cement equipment and upgrading cement plants with innovative technologies.
- **2002** Equity shareholding re-structure to become an Euro-Asian intercontinental company with 50% each of French (Jerome Friler) and Hong Kong (Adolf Wong) ownership.
- **2005** Designed, built and commissioned C-POWER pilot facility in Hong Kong.
- 2007 Started turnkey cement plant supply business, first line being 5000tpd new line in Luanda, Angola.
- **2008** Started to develop and promote C-POWER projects in China and the World.
- **2009** Development and field testing of innovative renewable energy equipment WINDSAT (wind-turbine tower) and PASAT (sea wave power generator).
- **2010** Strategic partnership with Chinese groups for worldwide WTE projects.
- **2013** Maisan refinery project award. First BOO project in Iraq of a value of \$6B.
- **2015** Bangalore WTE project, Maisan refinery and Power Plant financial close, Award of first C-POWER large scale in Dalian, China.

Satarem Today

- Traditional Business Areas
 - **Turnkey cement new lines**
 - Cement plant modifications
 - Production enhancement
 - Energy efficiency
- New Business Areas
 - WTE, Renewable energies & power plants
 - Refineries
- Represented in 60 countries over 5 continents
- Over 200 employees, 60% in engineering
- 2015 turnover US\$ 80 Million
- Pipeline projects value over US\$ 7 Billion

Activities

RENEWABLE ENERGIES Solar plants, New generation wind turbine & Swell to Energ turbine

Innovations ENVIRONMENT SECTOR

CEMENT PLANTS & WASTE TO ENERGY PLANTS

- Comprehensive turnkey EPC
- Operation & Maintenance
- Equipments and spare parts

OIL&GAS

Engineering & Manufacturing of equipment and spare parts for upstream and downstream POWER PLANTS Gas turbines, GTCC, Steam turbines, diesel, HFO

C-POWER

Electricity generation from Municipal Solid Waste incineration, combined with cement production

5

SATAREM's vision of its impact on the environment

- SATAREM's core values include (i) minimizing the environmental impact due to our activities and (ii) supporting sustained economic growth
 - We adopt a unique positioning to ensure complete fulfillment of our commitments
 - We develop environmentally friendly projects and integrate local population to their implementation
 - We pay special attention to defending our values all along our value chain

The values we share with our partners,

Our difference

⇒ Respect and promotion
 of the <u>highest</u>
 <u>environmental standards</u>

 ⇒ Equipments strictly compliant with European Norms / standards (emissions, water contamination, noise...

 ⇒ Ensure eligibility to carbon credit mechanism where possible Cement, Waste, Power sectors

نې بې نې

A step further...

 ⇒ Development of environmentally friendly technologies

Low environmental impact projects

⇒Local population empowerment through employment and training of local staff

Contribution to higher
 education of local
 engineering students to
 form next generations of
 plant managers

Satarem WTE References – BOT / BOO Contracts in progress					
City	Qty Waste (TPD)	Installed Power (MW)	BOT Duration (year)	Annual Revenues (\$)	
Buenos Aires	1 500	50	15	53 000 000	
Conakry	1 000	20	25	22 000 000	
Dakar	4 000	60	20	92 000 000	
Hyderabad	1 000	30	25	28 000 000	
Bangalore	2 000	60	25	41 000 000	
Accra	4 000	60	20	92 000 000	
Lome	1 500	45	25	80 000 000	
Yaounde & Douala	2 x 2 000	2 x 30	20	2 x 41 000 000	
Bangkok	1 500	45	25	80 000 000	

Satarem WTE References in China

Project	Description	Role	Status
Nanhai WTE, China	400tpd, grate type, 12MW	Overall design	Commissioned 2002
Likeng WTE,China	1200tpd, fluidized bed, 30MW	Design & Build	Commissioned 2006
Shenzhen WTE, China	Revamping of flue gas treatment	Design & Build	Commissioned 2006
Ningbo WTE, China	600tpd fluidized bed, 24 MW	Overall design	Commissioned 2007
Jiangyin WTE, China	800tpd, grate type, 12MW	Overall Design	Commissioned 2007
Nanhai WTE, China	800tpd, grate type, 12MW	Overall design	Commissioned 2008
Kunming WTE, China	2200tpd, fluidized bed, 45MW	Overall design	Commissioned 2010
Zhongshan WTE, China	1000tpd, grate type, 24 MW	Design & Build	Commissioned 2011
Boyang WTE, China	500 tpd, grate type, 10 MW	Design & Build	Commissioned 2013
Zhenjiang WTE, China	1050tpd, grate type, 20 MW	Design & Build	Commissioned 2014
Yiyang WTE, China	600tpd, fluidized bed, 12 MW	Overall Design	Under construction
ZuZhou WTE, China	1500tpd, grate type, 30 MW	Design & Build	Under construction
Puket WTE, Thailand	700 tpd, grate type 14 MW	Overall Design	Under construction
Guangzhou WTE, China	2000tpd, grate type, 50 MW	Design & Build	Under construction

Waste Management

Waste Management Options

Unmanaged Dumping: EHS Unacceptable

Environmental Hazards :

- Land pollution by stockpiled garbage
 - Toxic heavy metals
 - Organic pollutants
 - Non biodegradables
- Ground water pollution by leachate (garbage juice)
- Air pollution by VOC
 - Landfill gas methane (potent Green House Gas =21x CO₂)
 - Other fugitive gas: dioxins & furan, POP, hydrogen sulphite, ammonia

Safety Hazards:

- Spontenous burning of garbage pile, major source of dioxin emission
- Landfill gas explosions safety risk to scavengers & personnel on site

SATAREM

Health Hazards :

- Land, water and air pollutants
- Breeding ground for vectors & diseases
- Odor and toxic air emissions problem

Sanitary Landfills: Not Highly Sustainable

Leach Prevention : Difficult to Manage

Occupy Large Land Area

Leachate Treatment: Another Challenge

Landfill Gas – Maximum 70% Collection

Waste Management

What is WTE –Waste to Energy

WHAT IS WASTE TO ENERGY (WTE) ?

WTE is the only technology able to:

- Suppress large quantities of waste
- Produce high amounts of energy
- Create construction materials from the ashes

SATAREM possesses a patented technology that allows the transformation into electricity of large quantities of any kind of waste, without sorting, without emission of dioxin nor harmful gases and at competitive price.

SATAREM Incineration & Waste-to-Energy Design

• Various Applications

- Municipal solid waste
- Hazardous industrial waste
- Medical waste
- Sewage and industrial sludge
- Special waste

Versatile Design

- Stationary bed incinerators
- Fluidize bed incinerators
- Rotary kiln incinerators
- Mechanical grate incinerators

Superior Environmental Performance

- Incorporation of MPR[®] technology for front-of-pipe removal of chlorine and persistent organic pollutants
- "Near Zero" dioxins beats EU Specifications

Which kind of waste?

- Used tyres
- Plastics
- Paper
- Wood
- Glass
- Agricultural wastes
- Refuse derived fuel
- Oil, grease and solvents
- Green wastes
- Coal ash
- Distillation bottom
- Desulphurization gypsum
- Oil tank cleaning waste

Any kind

- Sewage sludge
- Industrial WWTP sludge
- Municipal solid waste
- Metal refining slag
- Toxic heavy metal sludge
- Construction waste
- Clinical waste
- Electronic scraps
- Leachate

. . . .

- Concentrated
- Animal carcass
- High toxic substance
- Ore processing waste

Lahore Project

Lahore

- Lahore and its surrounding, with a population of approx. 8 Million people is generating approx.8 000 TPD of waste. Most of this waste is collected by the Municipalities and dumped.
- Some landfills are being installed, but their management is not according to the European safety standards.
- SATAREM could bring its technology and know-how in WTE in addition to the appropriate financing in order to build a first WTE line of 2 000TPD.
- A recycling unit will be installed on the same site to valorize recycling material (metals, plastics, glass...)
- The existing wastes stocked in dumps can be recycled in the new facility to create electricity if the dump sites are close enough to the new facility
- A second line of 2 000 TPD will then be built

Environmental benefits

- Environmental protection and control
- > Wild landfills elimination
- Elimination of diseases and contamination
- Efficient control of polluting gases
- Elimination of methane and carbon dioxide
- Green and renewable energy

Benefits

Revitalization of region through primary and secondary improvements on local infrastructure

• Job Creation

- 1. The plant will create 300 direct and 2 000 indirect jobs. Prior and post construction the local community will be hired for the WTE plant.
- 2. Post graduated students will now have employment opportunities locally.

• Training Centres

- 1. A state of the art, modern, fully equipped training centre will provide all training requirements.
- 2. School for primary children will be provided.

• Health

- 1. The plant will host a fully functional hospital for both staff and local community.
- 2. Prevention of infectious diseases related to waste, especially amongst children.
- Infrastructure Development
 - 1. Project will update road infrastructure and create power supplies for local community.
 - 2. Implementing WTE plant will directly contribute to poverty alleviation by providing the energy needed for creating businesses and employment.

Technology Description

Technology Description

- Trash truck enters into the plant area, after being weighed, to reach the waste pit. The waste will be stored in the pit for about 7 days.
- Waste pit is an enclosed building with negative pressure air to avoid any smell.
- The waste inside the pit is grabbed and delivered to the incinerator's hopper by the waste crane's grab bucket, and then is evenly delivered to the incinerator for combustion via feeding grate.
- Incinerator has ignition burner and auxiliary burner and uses diesel oil as the auxiliary fuel. The ignition burner is used for ignition and temperature rise.
- Through the drying, combustion and burnout areas, after the complete combustion of the combustible components of waste, the slag falls into the slag extractor.
- Above the slag storage pit there is bridge grab crane, which is used to collect slag and load the trash truck with waste for transportation and comprehensive utilization.
- The waste that cannot be utilized will be sent to the landfill site.

Technology Description

- The high temperature flue gas, which arises from waste combustion, is cooled to 200°C via boiler and then enters into the flue gas treatment system.
- The flue gas enters into the reaction tower first, fully blends with the lime milk with a certain concentration and causes chemical reaction.
 - After the chemical reaction, the acid gas in flue gas is removed.
 - Spray active carbon into the flue between reaction tower and fabric filter, so as to absorb the heavy metal and dioxin in flue gas.
 - With the aid of fabric filter, the dust and reaction resultant are eliminated, the flue gas is sent to the chimney and discharged to the atmosphere via air fan.
- Boiler uses water as the working medium, absorbs the heat in the high temperature flue gas and supplies it to the turbo-generator unit for electric power generation. The electric power is used for the waste to energy plant and transmitted to the regional power grid.

Typical Plant Emissions Results				
Air Pollutant	EU Emission Standards (mg/m ³)	Actual Emission Data (mg/m ³)		
Dioxins (in TEQ ng/m ³) [*]	0.1 ng/m ³			
Total organic carbon (TOC)	10	2		
Hydrogen chloride (HCI)	10	2		
Hydrogen fluoride (HF)	1	0.02		
Sulphur dioxide (SO ₂)	50	18		
Nitrogen oxides (NOx)	200	50		
Carbon monoxide (CO)	50	45		
Particulates Matter (PM)	10	4		
Heavy Metals (Group 1) :Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V	0.5	0.2		
Heavy Metals (Group 2) : Cd & Th	0.05	0.003		
Heavy Metals (Group 3) : Be, Se	No regulatory limit	0.025		
Mercury (Hg)	0.05	0.003		

* All emission levels, including results of multiple (14 samples over 6 months) dioxin sampling, complies with and were well below EU standards

GUANZHOU LIKENG PLANT EXAMPLE

Capacity	1040tpd (2x520 tpd)		
Commissioning	October 2005		
Project	Engineering, procurement and construction		
Process	Mechanical Grate Reactors + Boilers		
Design & performance of the	2 boilers + 1 steam turbine		
energy generation	Capacity installed: 1x22MW		
	Efficiency conversion energy: ~24%		
	Consumption power internal: 20,322 MWh/Year		
	Power exported to grid : 102,842 MWh/Year		
	Capacity Annual Waste Treatment : 376,000 ton		
Environmental Performances	Ashes: Wt. loss on heating $< 3\%$		
	Air emission:		
	Particules ~ 7 mg/Nm ³		
	NOx ~ 144 mg/Nm ³		
	HCI ~ 34 mg/Nm ³		
	$SO_2 \sim 19 \text{ mg/Nm}^3$		
Ownership	Guangzhou Municipal Administration Bureau		
Operator	Veolia Environmental Service		
EPC	CCEPC		
SATAREM	Design and Process caclulations in collaboration with CCEPC		
	Supply Grate and Turbine		
	Smoke and ashes treatment		
	Start-up and emissions control		

Photos Likeng WTE Plant

Waste Unloading

Architecture

Grate

The Likeng plant is located inside the City of Guanzhou. Its design id in harmony with the city. No smell can be felt. The emissions fulfill the European standards, are measured in real time and are publicly monitored.

Section drawing

Voltage switch system

Boiler

Turbine

Refuse crane control room

Cooling tower & Truck weigh bridge

On-line monitoring display

EU standard, Chinese standard and discharge index of Likeng plant

污染物名称 Pollutant Names	单 位 Unit	国标GWBK-2002 National Standard	欧盟标准 EU standard	本厂排放指标 Discharge Index of Likeng Plant
颗粒物 Dust	mg/Nm³	80	30	10
HCI	mg/Nm³	75	50	50
HF	mg/Nm³	-	2	2
NOx	mg/Nm ³	400	-	200
SOx	mg/Nm ³	260	300	100
CO	mg/Nm³	150	100	100
Hg及其化合物 Hg&its Chemical Compound	mg/Nm³	0.2	0.1	0.1
Cd及其化合物 Cd&its Chemical Compound	mg/Nm³	0.1	0.1	0.1
Pb及其化合物 Pb&its Chemical Compound	mg/Nm ³	1.6	-	0.5
烟气黑度 Flue Gas Density	林格曼级 Lingeman Degree	1	_	1
二恶英类 Dioxin	ngTEQ/Nm ³	1.0	0.1	0.1

BOT Contract

Build/Operate/Transfer (BOT)

